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Abstract - The meaning of superluminality in electromagnetic wave propagation 

is addressed. The interesting case of diffractionless beams is analysed in view of 

their very peculiar properties with particular attention to their possible 

superluminality. A case study in the microwave region, reported in a famous paper 

by an Italian team of researchers [Phys. Rev. Lett. 84, 4830 (2000)], is analysed 

and interpreted both in terms of ray optic arguments and by considering the 
specific beam shape of that experiment, which can be regarded as a Bessel-Gauss 

type, thus exhibiting a fake group velocity higher than c when the observation is 

limited to the beam propagation axis. 

 

1. Introduction 

 

Superluminality in electromagnetic (e.m.) wave propagation has been always 

thought to by physicists as a forbidden obsession or a demonic dream. As a matter 

of fact, superluminal behavior has been observed in evanescent wave propagation 

and interpreted both within a near field field propagation effect for an electric 

dipole antenna and by means of a phase time model of the tunneling time theory 

[1]. It is not an easy task to find an e.m. beam capable to exhibit some kind of 
superluminal features and the question is certainly always debated in each case 

whether the basic principle of Special Relativity that nor energy neither 

information can propagate faster than light was violated or not. So-called 

diffractionless beams and X-waves have gained a considerable interest also 

because of their superluminal behaviour. Essentially, these types of solutions of 

the e.m. wave equation do not undergo phase variation under propagation. This 

property, which gives them the name of “diffractionless” turns out to be very 

useful, for instance, in nonlinear optics applications [2-5]. X-waves [6-8] and 
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nonlinear X-waves [9] have been studied and uccessfully employed due to their 

ability, as nonspreading wavepacket solutions of the linear and nonlinear wave 

equation respectivley, to carry unchanged images with no diffraction-induced 

distortion over long distances. For example, by using acoustic X-waves attractig 

applications in medical ultrasonic imaging are possible [6]. Bessel beams, which 

are typical diffractionless solutions of the wave equations though carrying infinite 

energy, and their physical counterpart that carries finite energy, i.e. the Bessel-

Gauss beams, are also drawning great attention lately as they are eigenstates of the 

orbital angular momentum of light and as such are used in a huge number of novel 

applications [10, 11].  Superluminality, however,  has been the most attractive 

property amongst all of the above beams both for theoretical implications [12, 13] 

and for practical consequences such as a possible use in signal transmission. 
Several schemes have been proposed to experimentally realize X-waves and 

Bessel beams [14, 15] even in the optical domain [16].  Saari et al. [14] realized a 

wideband, nonspreading axissymmetric Bessel-X-pulse and reconstructed the 

spatiotemporal profile of the field by using a very smart idea. In fact, time-

integration of the interference patterns of the field in the radial plane, at successive 

points along the propagation axis allows one to fully reconstruct the Bessel-like 

shape of the generated beam. In doing so they took advantage of the superluminal 

velocity of the Bessel pulse. The authors of [14], however, clearly state that the 

superluminality of their propagation-invariant interence pattern is a purely 

geometric effect.    

Here we focus rather on a more intriguing and very much debated experiment 

performed in the microwave (  3.5 cm) [15]. Mugnai et al. [15] shaped a 

microwave Bessel-like beam and found it to propagate faster than light along the 
optical axis. They places a circular slit right at the exit of a horn located at the 

focal plane of a spherical reflector. In the end they measured the arrival times of 

the microwave pulses at a movable receiver antenna connected to a detector. The 

experiment was carried out in free space so to rule out all the possible effects due 

to dispersion of the propagation medium. A number of papers, in fact, evidenced 

how some superluminal behaviour can arise from different phenomena occurring 

in the propagation medium [17 -24]. The results reported in [15] have been 

analyzed in [25, 26] where it is shown that on-axis superluminal propagation 

velocity of the field peak cannot be referred to as the group velocity of the 

wavepacket. Here we first dedicate a section to a simple ray optics argument that 

explains  the superluminal behaviour observed in [15] as a bias in the way to 
measure the propagation velocity of the beam. A more accurate analyses of the 

scheme implemented in [15] is illustrated in sec. three, where we consider a 

Bessel-Gauss beam and show that the on-axis projection of the beam wavefront 

propagation velocity is superluminal. Conclusions are drawn in the last section. 
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2. Geometric effect 
 

The geometric configuration of the experimental setup used in [15] is schematized 

in the inset of Fig. 1 a). In the polar frame with origin in the curvature centre O of 

the mirror M, a point-like source P radiates towards M. In terms of rays, a ray hits 

M in A and, after reflection, reaches Q. Each ray is associated to a given   while L 

and the effective optical path travelled by the ray,  = AP + AQ, read 
rescpectively: 

FIG. 1. a) INSET: Scheme of the experimental setup used in [15] in order to shape a Bessel 
beam in the microwave domain. Behaviour of the effective propagation velocity, v/c, versus 

L for p = 13.5 cm,  = 0.35 rad, and R = 25 cm, namely the same values of the parameters 

used in [15]. b) Sketch of the beam wavefronts in proximity of the optical axis, for p = 13.5 

cm and 10 cm, and for  = 16° (solid line) and  = 24° (dashed line), i.e. the same  values 

considered in [15]. 
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R being the radius of curvature of M and p = OP. The quantity 
  

  
 
  

  
 gives the 

effective propagation velocity of the microwave beam normalized to c, v/c, as 

measured in [15]. This quantity is plotted in Fig.1 a) versus L. Very interestingly, 

the plot reproduces the experimental results reported in [15] for p = 13.5 cm and  
= 0.35 rad, thus confirming a substantial conceptual flaw of the authors of [15] in 

interpreting the measured velocity, i.e. the Bessel beam on-axis crest velocity as 

the propagation velocity of the e.m. wave which is rather the group velocity. 
Figure 1 b) represents the beam wavefront in proximity of the optical axis for the 

two rays corresponding to  = 16° and 24° (p = 13.5 cm and 10 cm) which are the 
two cases considered in [15], by placing circular slits of different diameters. 

It is also worth stressing that for the rays reflected by the upper part of  M 

(     ) Q approaches O while L becomes smaller and smaller, whereas for those 

reflected by the lower part of M (     ) Q gets far away and v/c  1 in good 
agreement with the quoted experimental results. 

 
3.  Propagation velocity of Bessel-Gauss beams 

 
In order to provide an explanation for the superluminal effect reported in [15] 

which was deeper than ray optics but moved towards the same concept we 

performed an analysis of the field in the focal region of the apparatur realized by 

Mugnai et al. To this end we have considered a wavepacket constituted by 

monochromatic Bessel-Gauss fields which resembles a pure Bessel beam, but 

carries a finite amount of energy. Such a field of frequency  + ,  being the 
carrier, confocal parameter b, and unit amplitude at focus reads as: 
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with J0 the Bessel function, q(z) = z – ib/2,  (z) = arctan(2z/b), w0/w(z) = 

b/√       and  
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A generally complex time. The time delay   
 

 
     in Eq.(3) represents a wave 

travelling at the superluminal velocity c/cos. Far apart from the focal region the 

field in Eq.(2) takes a conical shape of aperture . A Gaussian wavepacket of the 

above modes, centred at frequency , is represented by an integral of u(,z;) in 

the deviation frequency  weighted by the generally complex function  ( )  
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). Inside the focal spot, by Fourier transforming back from the 

frequency to the time domain, u(,z;t) can be shown to read:  
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 and Im represents the modified Bessel 

functions of the first kind. Since inside the focal spot ||  1 the expansion (4) 
reduces to: 
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In particular, along the z-axis u(0,z;t) reads: 
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That is the wavepacket peaked in correspondence of the coordinates t, z obeys the 

propagation equation: 
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and seems to travel in proximity of the focus along the z-axis at a superluminal 

velocity which depends on the  angle. As already pointed out this superluminality 
just concerns the projection of the field along the z-axis, whereas in order to 

calculate either the phase or the group velocity of the beam the entire wavepacket 

must be considered.  

 
4.  Conclusion 

 
In conclusion, we have presented a twofold argument to explain the observed 

superluminality in the microwave range [15] in terms of a flaw in the concept and 

the measurement of the propagation velocity of an electromagnetic wave used by 

Mugnai et al. Both in terms of ray optics and in terms of a near-field analysis of 
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the Bessel beam created by Mugnai et al. With both arguments we have 

demonstrated that the observed superluminality, far from being a mistake of the 

experiment, is rather a mistake in the interpretation of the measured quantity. The 
results reported by Mugnai et al. are not at all in conflict with causality. One can 

simply interpret them as demonstrating that, by looking along the beam 

propagation direction, light can actually propagate from point A to point B faster 

than c. There is certainly no violation of causality as the light at B is not causally 

connected to the light at A. i.e. the light at A cannot be regarded as the source of 

the light at B. It is a lot like the famous example of the rotating flashlight 

producing a spot on a distant wall that moves faster than c: the spot at the point A 

is not the source of the spot at subsequent point B.  
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